A generating set for the palindromic Torelli group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating the Torelli Group

We give a new proof of the theorem of Birman–Powell that the Torelli subgroup of the mapping class group of a closed orientable surface of genus at least 3 is generated by simple homeomorphisms known as bounding pair maps. The key ingredient is a proof that the subcomplex of the curve complex of the surface spanned by curves within a fixed homology class is connected.

متن کامل

Small generating sets for the Torelli group

Proving a conjecture of Dennis Johnson, we show that the Torelli subgroup Ig of the genus g mapping class group has a finite generating set whose size grows cubically with respect to g. Our main tool is a new space called the handle graph on which Ig acts cocompactly.

متن کامل

An infinite presentation of the Torelli group

In this paper, we construct an infinite presentation of the Torelli subgroup of the mapping class group of a surface whose generators consist of the set of all “separating twists”, all “bounding pair maps”, and all “commutators of simply intersecting pairs” and whose relations all come from a short list of topological configurations of these generators on the surface. Aside from a few obvious o...

متن کامل

Cutting and pasting in the Torelli group

We introduce machinery to allow “cut-and-paste”-style inductive arguments in the Torelli subgroup of the mapping class group. In the past these arguments have been problematic because restricting the Torelli group to subsurfaces gives different groups depending on how the subsurfaces are embedded. We define a category TSur whose objects are surfaces together with a decoration restricting how th...

متن کامل

6 DIMENSION OF THE TORELLI GROUP FOR Out ( F n )

Let Tn be the kernel of the natural map Out(Fn) → GLn(Z). We use combinatorial Morse theory to prove that Tn has an Eilenberg–MacLane space which is (2n − 4)-dimensional and that H2n−4(Tn, Z) is not finitely generated (n ≥ 3). In particular, this recovers the result of Krstić–McCool that T3 is not finitely presented. We also give a new proof of the fact, due to Magnus, that Tn is finitely gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2015

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2015.15.3535